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DEVELOMUNT OF THE MAPPING FUNCTION AT AN

ANALYTIC CORNER

by

R. Sherman Lehman

1. Introduction.

In this report we shall apply some theorems proved in [33 to study

the following problem in conformal mapping. Let i and P be portions

of two analytic curves which meet at the origin at an angle TvoC > 0. We

assume that the origin is a regular point for both P1 and r' Let D be

a domain which near the origin is bounded by F1 and ". Consider a1

univalent conformal mapping F(z) of a semineighborhood y>O of the origin

of the z= x+iy plane into the domain D, such that F(O)- O, a portion of

the positive x-axis near z= 0 goes into ' and a portion of the1' aporton o thenegative

x-axis near z- 0 goes into r2" How does the mapping function F(z) behave

in the neighborhood of the origin?

A partial answer to this question is given by a theorem proved by

Lichtenstein [51. Let F 1 (z) be the inverse function which maps D into the

upper half plane. Then Lichtenstein proved that for z in the neighborhood

of the origin

dF;-'z) =z l/([AP(Z)

where C(z) is a continuous function with T(O) 0. This same result can,

however, be obtained with much weaker requirements on the boundary curve

as has been shown by the work of Kellogg [21 and Warschawski [61.
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In this paper we shall show that it is possible to obtain an asymptotic

expansion for F(z) for z in the neighborhood of the origin. The method

used is a generalization of that used by Levy [41, who proved that such an

asymptotic expansion exists in the case in which Pi and r. meet at a

straight angle.

2. Notation.

First let us make clear what type of asymptotic expansions we will be

considering. Let '4n(z), (n= 0,1,2,...) be a sequence of functions such

that Yn.l(Z)/ n(z)--O as z-)O in the sector QSarg zs 0
2. A series

OD
G__An )(Z) is called an asympotitic expansion for f(z) valid in the

sector GIS arg zSQ2, and we write
OD

n0f, (z)) E,

if for every integer N 0
N

f(z) A n~ ~)"I1()
n=0

as z-.O, 1 Sarg z< 2 .

Clearly, in a sector 01 S arg z<02 a function f(z) cannot have more

than one asymptotic expansion in terms of such a sequence of functions

^/n(
z

)
.

Throughout this paper we will use the letter "c" to denote a typical

coefficient in a series when the exact value of the coefficient is not

important in the discussion. For example, instead of writing t c mn ,
O n0

we may write simply czn  Thus we avoid a multiplicity of
ns0

subscripts.
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3. fring pal Results.

Let F(z) be the mapping function described in the introduction. We

shall prove the following theorem.

THOE 1. IC4>o i o , ZfnAo.gof z which

:o zero ihils Jarg z remins de,

F(s) '--'~ Akgzk eoL

where k nd 2 un _4jt.Ug , k> 0, 1 2 1; And th coeff ient 0.

U.I QC'p/q> 0, A fraction reduced Jo lowest terms, then fr -- PO,

Iarg zi bounded

F(Z) NkfJL mzklo(log z) m

where k, 2, And m rn over integers for whic

k > 0 , l <Sq , O< m< k/p

and the coefficient kOI 10.

In this theorem the terms in the series are supposed to be arranged

in an order such that a term of the form zk (log z)m precedes one of the

form zk' ' (log z) m' if either k+Ic(<k,+'oL or k+10OLk'+l'o( and

m>m'. Arranged in this order, these products of powers of z and log z form

a sequence of functions n" The coefficients in these expansions are

complex constants, some of which may be zero.

From Theorem 1 an asymptotic expansion for the inverse function rl(z),

which maps the domain D onto a portion of the upper half plane, can be

obtained easily by replacing the asymptotic expansions by finite developments

with error terms and proceeding as usual in the inversion of functions. The

result obtained is stated in the following theorem.
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THEORE 2. If of- s irrational, then f z-iO, Iarg zI _ounded, the

inverse of F(z).,

where k and run over integers, kO 0 _>ZI; ad Bc O If 0 =p/q,a

fraction redud to low ste , then fo z--)O, jarg zi bogded,

F(z) . ZB k.mz k*PA(log Z)m

wher k, ,and m run over integers fa which k O, 1I1P p, OmSk/q;

ad B010 O.

Observe that the function F(z), defined originally for OS arg z5S'IV,

can be extended by the reflection principle across both the positive x-axis

and the negative x-axis since the curves ri and r2 are1ar2 analytic curves.

The images of I and F2 in such reflections are again analytic curves.

Hence F(z) can again be extended by reflection, and in fact can be continued

near the origin onto the entire logarithmic Riemann surface with branch

point at the origin. The function F(z) is regular for I zj sufficiently

small, say, O< jz < p, on any sheet of this Riemann surface; but, generally

speaking, p depends on the sheet of the surface.

4. Extension of Developments to Larger Sectors.

If the asymptotic expansions of Theorems 1 and 2 hold for z--*0 in

O arg zsTF, they hold for z-*O in any finite sector 01 :arg z:SQ 2 .

Suppose, indeed, that for given r> 0, F(z) has a finite development of the

form

(4.1) F(z) - ZAkPMz k (log Z)mo(zr)

as z ->O, OSarg zi 7, where the sum is extended over integers k, , and m

such that k+Is r, k_>, zl; and OSal k/p when O(-p/q, m0 when o.

is irrational. Then the same development is valid for z- 0 with

4
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-IT S arg z S 0. Let * be the image of in an analytic reflection on the

curve r' Then Z, the complex conjugate of ?*, is an analytic function

of , say ( ), which is regular for I1 sufficiently small. By the

reflection principle, since F(z) takes the positive real axis, arg z - 0,

into the analytic curve r, we have
F(i) = (F(z))* - (7(z))

for 0< arg z< M. Observe that this formula continues F(z) for JzJ suffi-

ciently small into the sector -r S arg zs 'M. Since ( ) is regular

for J j sufficiently small and ((O)= O, we have

n 1

for z-,O. Then with

F 7(z) = (l[ ck+cL(log ,)m+o(zr-,) , (k> O, _O, k+.& . r-oL)

we have by (4.1) for z--O, OSarg z5'T,

n = znM(czk+(log z)m+o(zr-n)

where kO, ._> O , k+LS r-noc; m is limited as before. Also

o( r/,) = o((O(z9)r/% = o(z)

as z --*0. Consequently for z--.O, OS arg zS 7T,

7(Z) - (F(.)) ck+Z(log )m+o(-r)

where k, i, and m are restricted in the same way as in (4.1). But this

means that F(z) has a development of the same type as (4.1) for

-arg z:1O. This new development must coincide with that given by (4.1)

since both hold for z -)O with arg z 0.

In the same way we can reflect across the line arg z- = T and establish

that (4.1) holds in the larger sector thus obtained. By induction we can

prove that (4.1) holds in any finite sector 1 Larg zSO 2. Thus we see

A
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that if Theorem 1 holds for z-O in the sector Oarg zj IT, it holds for

z-/0 in any finite sector.

5. Some Lemmas.

We now state some lemmas which will be used in the proof of Theorem 1.

Lemmas 1 and 2 are special cases of Theorems 2.1 and 2.2 of [31. The

integrals are Lebesgue integrals extended over positive values of t.

The range of z considered is O<IzI< A, -21TS arg z0 0. We take the

branch of the analytic function of z, log (1-z/t) which is real for

O z< t, arg z-0.

LEMA 1. Let A be a positive real number, h a real number >-l,

and n a non-negative integer; and let
A

(P(z) = ft (log t)hlog(l-z/t)dt

0

Then there is a power series q(z), which converges for Izk A, and a

polynomial in log z, P(log z), such that

T(z) - z4*lP(log z)+q(-)

If k is an integer, the polynomial P is of degree n+l; and if f is not

an integer, it is of degree n.

LEMA 2. Let (t) be a measurable function, bounded absolutely

for 0< t< A and such that P(t)-PO as t-->O through positive real values.

Let t be a real number > -1 which is not an integer, and let
A

i ( Z ) =f P (t)t log(l-z/t) d t .

0

Then there is a power series q(z) such that for z-900

PlCZ) = q(z)+o(zr 1 )
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LDEMA 3. Let k be a real number. Let -7(z) be an analytic function,

regular for O< IzI<R, Ql<_arg z<@2 and such that (z)=o(z) for z--O

in the sector Qi arg zs 2. Then the derivative

(z) W o(z -l)

for z -*0 in any sector in the interior of the sector 4@< arg zS 2 .

A proof of Lemma 3 is obtained by estimating a Cauchy integral

with path a circle about z with radius 81 z [, small. Details are given

in the proof of Lemma 2.1 of 131.

LEMA 4. Let ? be a real number. Then for z -+0 with arg z I

bounded, I Z'AF(z)I tends to zero if A <oL and tends to infinity if X > 6-

A proof of Lemma 4 can be obtained by a study of the Poisson integral

(see Gross (l, pp. 57-611ithe requirement that z--O in an angle in the

interior of 0< arg z<1Tcan be eliminated by using the fact that F and

r2 are analytic curves).

This lemma also follows from the theorem of Lichtenstein mentioned

in the introduction.

6. Preliminary Transformations.

First we establish that the general case can be reduced to the special

case in which the curve r2 is an analytic curve tangent to the positive

real axis and rl is a portion of the ray arg =- ITo in the plane.

Consider a function q)( Y,), regular for I sufficiently small, for which

Y+(O)=O, Y'(O)-b O, and which takes the analytic curves ri into the

line arg T r'-. . The function 4) maps r 2 into an analytic curve

tangent to the positive real axis. For the sake of simplicity of notation

we carry through the proof in detail only for irrational 0c.
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Suppose that we know Theorem 1 in the special case in which rI is the

line arg =-'T , then for z -+O we have

'?(Fz))= z - -ck koO( r

where the sum is extended over integers k and £ for which kO, 1 z O,

k+1oS r. In addition, we can suppose that C oo/O. Then since the

inverse

n =2

as -, we have

F(z) -'P-1(~'(F(z)) z c4 fZ kjk+4o0( r)} +Z'4 4 Iz k+.O(z r)

+ ... +ZNO~4'Zczk+&C+o(zr)f +o(NOV-)

for z- O. Hence by taking N large enough, we obtain

F(z) = z:" gz k4 o(zr)

where Co C0 O. All of the sums considered are extended over integers
a0 b oo

k> O, _ 0, k+<oL_ r. Thus we need consider only the special case in

which rI is a portion of the line arg -

Now we make another preliminary transformation. Let w - so that

the line arg ' =-ToC goes into the negative real axis. The analytic

curve r goes into a curve f" tangent to the positive real axis. This

new curve r' is not analytic at the origin; we will find it useful to have

the equation of F'.

Let ' +iN. The analytic curve F'2 is given by an equation with

j real a

77- a2  
2 4a 3 3+a 4  .+

for i > 0, where the series is convergent for sufficiently small. Then

on r" we have
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V - 1l/ - €/i'a21 +ie3 y2)...1o

Separating real and imaginary parts, we have with w- u+iv

I M l/oL 1+c 2+0  -3,)u- M l10qc+c ...)- >lO(c.g.y+

Consequently,

uC/= +0 2+0 3+ .

and thus

"=u* 'cu20+ ou3-+ ..

Hence we obtain finally that the curve r' is given by an equation of the

form

kCi ko
(6.1I) v = u 2 _ b k u ~

for uZ 0, where the series converges for u sufficiently small.

7. Obtaining the Asyptotice_ I_&jL ".

Let D' be the image of D under the transformation w ; we can

now assume that near the origin D' is bounded by the negative real axis

and the curve r' given by the equation (6.1). We consider the function

w-=G(z) = (F(-z))I/ 0 which is a univalent conformal mapping of a somineighbor-

hood y< 0 of the z-x~iy plane into the domain D' of the w- u~iv plane.

Observe that G(O)- 0, a portion -AS x 0 of the negative x-axis is mapped

into a portion of the negative u-axis, and a portion O.% x A of the

positive X-axis goes into r'.
We will need an estimate for G(z) and its derivative G'(u). By

Lemma 4 we have for z--)0, Jarg zi bounded

G(f) - [A(-,) He/n.e foo) a11yo
for any C<K . Hence for any IE > 0
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(7.1) G(z) = o(z 1-)

as z--O with I arg z I bounded. Using Lemma 3 we conclude further that

for z--,*O

(7.2) G'(z) - o(z-E)

Now we construct a certain function H(z) which differs from G(z)

by a single-valued function. Observe that the function

G(z) = u(x,y)+iv(x,y)

can be continued across the negative real axis, arg z -1T, by the

reflection principle. In particular, we have for arg z- 0

G(z).G(ze -2Ti) - u(z,O)+iv(z,O)-[u(z,O)-iv(z,O)I

= 2iv(z,O)

Consider for -2MI arg z 0 the analytic function
A

(7.3) H(z) = v(tO) log(l-z/t)dt

0

where the integral is extended over positive real values and the branch

of log(l-z/t) considered is the one which is real for O< z< t, arg z -O.

That the integral converges follows from the estimate (7.2).

For arg z- 0 we have

H(z).H(ze-2i) - J tO) dt - 2iv(z,O)

0

since

log(l-z/t)-log(l-ze 21Ti/t) - 2T 1i for t < z ,

M 0 for t > z.

Thus the difference p(z) - G(s)-H(z) satisfies the condition p(z) - p(zse" 7)

for erg z- 0. Furthermore p(z) is regular for O< zj< A, -21T< arg z< 0;

it is continuous as z approaches a point of the positive real axis for

arg z O or arg z--2 T, and it is bounded for z--10. Hence by Riemann's
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theorem on removable singularities p(z) is equal to a power series convergent

for I zl< A.

From (6.1) and (7.3) we conclude that for -21T:arg z:10
A

0 tnl 

where p(z) is a power series with constant term equal to zero.

By (7.1) and (7.2) we have a u(tO) = o(t-6 ) and u*= o(t(lE )a t

for t-O, E an arbitrary positive number. Hence for t--9O
(t.o) OD(1~+ C)(1- 6) - 1 )

7 b(1+n°ouno= ~

n=1

Inserting this estimate in (7.4) and applying Lemma 2, we obtain for z -,O,

-2- 1S arg zS 0

(7.5) G(z) - az+z2q(z)+o(z(i+o)(l-E))

where q(z) is a power series in z which converges for Izi sufficiently

small. We conclude that a# 0 by applying Lemma 4 with A slightly larger

than o(. Knowing this, we can conclude further that a is positive from

the fact that G(z) maps the positive real axis into r', a curve which at

the origin makes an angle of 'T with the negative real axis. Since

G(z) - [F(-z)]1/04 the result of Section 4 shows that the estimate (7.5)

holds for z--+0 in any finite sector, i.e., for z--P0 with (arg zj bounded.

Now we prove Theorem 1 by induction. We consider first the case

in which o. is irrational. We shall prove that there are constants ak

such that for every integer N,

(7.6) G(z) a k+*o(Zs) , (k>l, . 0)

k*+oYj N9.

as z-->O with (arg zi bounded. We begin by noting that G(s) has such a

development for N- N where N in the integer for which -L S N < 1
0 0 0c 0
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This follows directly from (7.5) since for E sufficiently small

(l4.)(l-)_> NoO and hence o(z(lC)(l ) )o(zN°). Consequently, to

prove (7.6) by induction it will be sufficient to show that if G(z) has a

development of the type (7.6) with an error term o(z N), then G(z) has

such a development with an error term o(z(N+l)0). In proving (7.6) by

induction we will simultaneously obtain a proof of Theorem 1 by using

the fact that F(z) - [G(-z) 1'.

By the induction hypothesis we have

u(t,0) = k+J; Re iakQ tk'l o(tJ") ,(k>1, _0),

and thus since alO = a>0

u(t,0) = at. f i+ ctkO+Co to(- )

where the sum is over k> 0, 9 z 0, for which (k,Q (00,) and k+ S NCC-1.

Using the binomial theorem, we find

u n o . a notno e ctk+&.o(tNP'l)1 (k_>0 Op _>Z0).

Moreover, by Lemma 3 and the induction hypothesis we have for t-PO

a u(t0) = Re G'(t) = (k-l' °L)Re at ,t k  ° ( t N l-

at N+I-Z t1~+ t?&1

where k>, A _ 0. Inserting these estimates in (7.4), we obtain
A

G(z) - p(z)f 2Ictkkal-+O(t(N1,-l ) log(l-z/t)dt

0

where the sum is over integers k_ O, > _ 1, for which k+.2(: (Nl)o4 -1.

Now we apply Lemmas 1 and 2, observing that since P 1 and 04 is

irrational, k+ Ia cannot be an integer. We find for z-)O, - 2 lI: arg z 0,

(7.7) G(z) a " kk o(-(S1*), (k>l, _0).

ktAi(N1D
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When k and I are integers for which k+IC :, NoL, the coefficient akL must,

of course, be the same as that appearing in the development with error term

o(zNo).

We wish to prove that (7.7) holds for z--,0 in any finite sector.

We note that for z--O, 0 S arg zS27T

F(Z) = [G(-z)1Ic' - "-- 1 + _~++~(+)L1

where the sum is over k>, O _ 0, for which (k, 2) (0,0) and

k+2o. (Nl)c< -1. Hence by the binomial theorem

(7.8) F(z) = E- Akzk +o( o(z (N-2 d-l)

where the sum is extended over k> 0, _ 1, for which k+2o(: (N+2)O -1.

Note further that A01 / 0. We have proved (7.8) for z--)O with OS arg z

S 2Tr, but by the result of Section 4 this formula must hold for z--*0 in

any finite sector. Consequently, from (7.8) by using the binomial theorem

we can obtain (7.7) for z-->O in any finite sector. Thus G(z) has a

development with error term o(z(N+l)°<). Hence by induction (7.6) and

also (7.8) hold for all N. This proves Theorem 1 for irrational 0e.

Now we prove Theorem 1 for o = p/q, a fraction reduced to lowest

terms. Let 6 be a positive irrational number less than 0. We shall prove

that there are constants akim such that for every integer N, as z -- 0,

jarg zj bounded

(7.9) G(z) a akam k AoL(log z)M+o(zI)

k~.Qo(S N5'
where k> l, 01Q ,q-l, and Om:1 - . We begin by noting that G(z) hasi p

such a development for N- NO where N0 is the integer for which - No 1+
0

as can be seen directly from (7.5). Consequently, to prove (7.9) by

induction it will be sufficient to show that if G(z) has a development of
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the above type with error term o(zNO), then it has such a development with

error term o(z(N+l) ).

By the induction hypothesis we have for positive t-3O

u(t,o) = Z Re faQftk+A(1og t)m+(tNO)

k o s NV

where k>1, 0iSq-1, 0SmS . Since ao= a 0, we have

u(t,0) = at~l+ ct (log t)m+o(tN-l2

where the sum is over integers for which

(7.10) k > 0 ; 0 S 2 Sq-1 ; 0 S m S k/p ; k+ Vd, Ne-1

Using the binomial theorem, we obtain

k= anctncK jctk',I(log t)m+o(tNl)

where k, k, and m are restricted by the conditions(7.10). Moreover, by

Lemma 3 and the induction hypothesis we have

au(t.O) = .ctk ( log t)m (tNO-1)

where again k, .£, and m are restricted by the conditions (7.10).

Inserting these estimates in (7.4) we have, since
o(tNd - l) . o(t(N+l)e- l ) ,

the formula t

G(z) = p(z)+f.j ctk+ o(t(N+ )d- ) log(l-z/t)dt

The sum in the integrand is extended over integers k, A, and m for which

k>O ; 1lS :Sq ; 0OS m S k/p ; k (N I)e -1

Now we apply Lemmas 1 and 2 to obtain a better development for G(z).

Note that k+O(.-k+ Ip/q cannot be an integer unless Jinq. Consequently

terms of the form

Ot k+(log t)
m
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in the integrand, with f #q, produce besides a power series only terms of

the form

cz kl+Po(log z)m

with

0 SMS m s(k+l)-i

p

in the development for G(z). On the other hand, when 2 q they produce

besides a power series only terms of the form

czk lAQ(log Z)m' czk p+l(log z)m'

with

O S m' S m1 + 1 I
p p

In applying Lemma 2 we observe that (N+l)2 -1 is not an integer because 6

is irrational. Hence we conclude that for z---O, -2W-& arg z O,

(7.11) G(z) - L aktmzktl log z)m+o(z ( N I )L)

where k_>l, OSJSq-l, and Omjkl
p

As in the case of irrational oC( we obtain from this the result

(7.12) F(z) " Ak~mZkt log z)m+(Z(Nl)Y + 0 ' l) , (A010o )

where the sum is over integers k, , and m for which

k > 0 , 1 S q , 0 S m : k/p ; k4QL.. S (N+l) 2+o(-1

By (7.11) this result holds for z-->O with OS arg zS 21r, but by the

result of Section 4, it must hold for z--tO in any finite sector. From

this we then obtain (7.11) for z--.O in any finite sector. Hence G(z)

has a development with error term o(z(Nzl) ). Thus by induction (7.9)

and also (7.12) hold for all N. This completes the proof of Theorem 1.



- 16 -

We note finally that by Lemma 3 derivatives of F(z) of arbitrary order

have asymptotic expansions which can be obtained by differentiating the

expansion for F(z) termwise and then rearranging the terms in the new

series in an appropriate order.
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